Коэффициент ранговой корреляции Спирмена

Расчет коэффициента корреляции Спирмена

При проведении эмпирического исследования в дипломной по психологии для расчета коэффициента корреляции Спирмена удобнее пользоваться статистическими программами. Однако, этот критерий нетрудно рассчитать и вручную.

Пример расчета коэффициента корреляции Спирмена

Предположим, в рамках дипломной работы по психологии проводится исследование влияния климата в коллективе на состояние сотрудников. Одна из задач исследования состоит в выявлении взаимосвязи между климатом и эмоциональным истощением сотрудников.

Выдвигаем гипотезу – существует отрицательная взаимосвязь между социально-психологическим климатом в коллективе и степенью истощения сотрудников.

В таблице приводятся данные, отражающие этапы расчета коэффициентов ранговой корреляции Спирмена. Суть расчета сводится к тому, что от собственно значений переходим к их рангам (ранг отражает положение показателя в общем списке и записывается в виде натурального числа). Далее находятся разности между рангами, эти разности возводятся в квадрат и суммируются.

Эмоциональное истощение (Х)

Психологический климат (Y)

Ранг Х

Ранг Y

Ранг Х-Ранг Y

(Ранг Х-Ранг Y)2

1

15

0,7

6

8

-2

4

2

15

0,6

6

5,5

0,5

0,25

3

15

0,6

6

5,5

0,5

0,25

4

13

0,5

1

3

-2

4

5

15

0,7

6

8

-2

4

6

14

0,5

2

3

-1

1

7

15

0,7

6

8

-2

4

8

15

0,5

6

3

3

9

9

16

1

10

10

10

15

6

1

5

25

Сумма

51,5

Формула расчёта коэффициента корреляции Спирмена

                  Сумма(D2)

R= 1 – 6—————-

                 N(N2-1)

D – разность между рангами

Сложность расчёта корреляций Спирмена вручную связана с необходимостью вводить поправки на одинаковые ранги, что достаточно трудоемко.

Поправка для Х:

Тх=(73-7)/12=336/12=28

Поправка для Y:

Тy=(2(33-3)+(23-2))/12=(48+6)/12=4,5

 

                  Сумма(D2)+Тх+ Тy                   51,5+28+4,5

Rэмп= 1 – 6———————= 1 – 6—————————=

                         N(N2-1)                            10(10*10 – 1)

                84                    504

=1- 6 ———— =1 – ———-=1 – 0,50909= 0,4909

               990                 990

В специальной таблице находим значение критического значения коэффициента ранговой корреляции для выборки из 10 человек и для уровня значимости 0,05:

Rкр (10)=0,64

Rэмп˂ Rкр (0,49˂0,64)

Следовательно, не существует связи между социально-психологическим климатом в коллективе и степенью истощения сотрудников. Для интерпретации данного результаты (а интерпретировать результаты статистических расчётов в дипломах по психологии очень важно) можно сказать следующее. Возможно, в коллективе сотрудников, где проводилось исследование, существуют социально-психологические или организационные факторы, которые опосредуют влияние климата в коллективе на эмоциональное истощение сотрудников. В связи с этим прямая взаимосвязь между этими показателями нивелируется.

Читайте также:  Как тестировать индикатор в тестере стратегий Metatrader 4

 

Анализ результатов расчета коэффициентов ранговой корреляции Спирмена

Если коэффициент ранговой корреляции Спирмена вычисляется с помощью статистической программы, то она сама выделяет статистически значимые корреляции при заданном уровне статистической значимости (0,05 или 0,01).

Если расчёт коэффициента ранговой корреляции Спирмена проводится вручную, то после получения эмпирического значения его нужно сравнить с критическим. Критические значения коэффициентов ранговой корреляции Спирмена приводятся в специальных таблицах для разного объема выборки и уровня статистической значимости.

Далее нужно сравнить эмпирический и критический коэффициенты:

  • если значение эмпирического коэффициента ранговой корреляции больше или равно критическому, то делается вывод о существовании статистически значимой корреляционной связи между показателями;
  • если значение эмпирического коэффициента ранговой корреляции меньше (как в приведенном выше примере) критического, следовательно, статистически значимой корреляционной связи между показателями нет.

Несмотря на различные алгоритмы расчета корреляций Пирсона и Спирмена логика их анализа и интерпретации одинакова.

 

Коэффициент корреляции Пирсона

<хедер> addimport_exportmode_editdelete

Изменения случайных величин

arrow_upwardarrow_downwardXarrow_upwardarrow_downwardY

Размер страницы: 5102050100chevron_leftchevron_right

<хедер class="mdc-dialog__хедер">

Изменения случайных величин

X

Y

СохранитьОтменить <хедер class="mdc-dialog__хедер">

Описание метода ранговой корреляции Спирмена

spirmen
При наличии двух рядов значений, подвергающихся ранжированию, рационально рассчитывать ранговую корреляцию Спирмена.

Такие ряды могут представляться:

  • парой признаков, определяемых в одной и той же группе исследуемых объектов;
  • парой индивидуальных соподчиненных признаков, определяемых у 2 исследуемых объектов по одинаковому набору признаков;
  • парой групповых соподчиненных признаков;
  • индивидуальной и групповой соподчиненностью признаков.

Метод предполагает проведение ранжирования показателей в отдельности для каждого из признаков.

Наименьшее значение имеет наименьший ранг.

Этот метод относится к непараметрическому статистическому методу, предназначенному для установления существования связи изучаемых явлений:

  • определение фактической степени параллелизма между двумя рядами количественных данных;
  • оценка тесноты выявленной связи, выражаемой количественно.

Корреляционный анализ

Статистический метод, предназначенный для выявления существования зависимости между 2 и более случайными величинами (переменными), а также ее силы, получил название корреляционного анализа.

Получил свое название от correlatio (лат.) – соотношение.

При его использовании возможны варианты развития событий:

  • наличие корреляции (положительная либо отрицательная);
  • отсутствие корреляции (нулевая).

В случае установления зависимости между переменными речь идет об их коррелировании. Иными словами, можно сказать, что при изменении значения Х, обязательно будет наблюдаться пропорциональное изменение значения У.

В качестве инструментов используются различные меры связи (коэффициенты).

На их выбор оказывает влияние:

  • способ измерения случайных чисел;
  • характер связи между случайными числами.

Существование корреляционной связи может отображаться графически (графики) и с помощью коэффициента (числовое отображение).

Читайте также:  Индикатор разворота тренда без перерисовки: обзор и характеристики

Корреляционная связь характеризуется такими признаками:

  • сила связи (при коэффициенте корреляции от ±0,7 до ±1 – сильная; от ±0,3 до ±0,699 – средняя; от 0 до ±0,299 – слабая);
  • направление связи (прямая или обратная).

Цели корреляционного анализа

Корреляционный анализ не позволяет установить причинную зависимость между исследуемыми переменными.

Он проводится с целью:

  • установления зависимости между переменными;
  • получения определенной информации о переменной на основе другой переменной;
  • определения тесноты (связи) этой зависимости;
  • определение направления установленной связи.

Методы корреляционного анализа

subsidii
Данный анализ может выполняться с использованием:

  • метода квадратов или Пирсона;
  • рангового метода или Спирмена.

Метод Пирсона применим для расчетов требующих точного определения силы, существующей между переменными. Изучаемые с его помощью признаки должны выражаться только количественно.

Для применения метода Спирмена или ранговой корреляции нет жестких требований в выражении признаков – оно может быть, как количественным, так и атрибутивным. Благодаря этому методу получается информация не о точном установлении силы связи, а имеющая ориентировочный характер.

В рядах переменных могут содержаться открытые варианты. Например, когда стаж работы выражается такими значениями, как до 1 года, более 5 лет и т.д.

Коэффициент корреляции

Статистическая величина характеризующая характер изменения двух переменных получила название коэффициента корреляции либо парного коэффициента корреляции. В количественном выражении он колеблется в пределах от -1 до +1.

Наиболее распространены коэффициенты:

  • Пирсона – применим для переменных принадлежащих к интервально шкале;
  • Спирмена – для переменных порядковой шкалы.

Ограничения использования коэффициента корреляции

Получение недостоверных данных при расчете коэффициента корреляции возможно в тех случаях, когда:

  • в распоряжении имеется достаточное количество значений переменной (25-100 пар наблюдений);
  • между изучаемыми переменными установлено, например, квадратичное соотношение, а не линейное;
  • в каждом случае данные содержат больше одного наблюдения;
  • наличие аномальных значений (выбросов) переменных;
  • исследуемые данные состоят из четко выделяемых подгрупп наблюдений;
  • наличие корреляционной связи не позволяет установить какая из переменных может рассматриваться в качестве причины, а какая – в качестве следствия.

Проверка значимости корреляции

Для оценки статистических величин используется понятие их значимости или же достоверности, характеризующей вероятность случайного возникновения величины либо крайних ее значений.

Наиболее распространенным методом определения значимости корреляции является определение критерия Стьюдента.

Его значение сравнивается с табличным, количество степенней свободы принимается как 2. При получении расчетного значения критерия больше табличного, свидетельствует о значимости коэффициента корреляции.

При проведении экономических расчетов достаточным считается доверительный уровень 0,05 (95%) либо 0,01 (99%).

Ранги Спирмена

Коэффициент ранговой корреляции Спирмена позволяет статистически установить наличие связи между явлениями. Его расчет предполагает установление для каждого признака порядкового номера – ранга. Ранг может быть возрастающим либо убывающим.

Количество признаков, подвергаемых ранжированию, может быть любым. Это достаточно трудоемкий процесс, ограничивающий их количество. Затруднения начинаются при достижении 20 признаков.

Читайте также:  Игра на бирже Форекс – основные понятия и алгоритм действий трейдера

Для расчета коэффициента Спирмена пользуются формулой:

formul1

 

в которой:

n – отображает количество ранжируемых признаков;

d – не что иное как разность между рангами по двум переменным;

а ∑(d2) – сумма квадратов разностей рангов.

Применение корреляционного анализа в психологии

Статистическое сопровождение психологических исследований позволяет сделать их более объективными и высоко репрезентативными. Статистическая обработка данных полученных в ходе психологических экспериментов способствует извлечению максимума полезной информации.

Наиболее широкое применение в обработке их результатов получил корреляционный анализ.

Уместным является проведение корреляционного анализа результатов, полученных при проведении исследований:

  • тревожности (по тестам R. Temml, M. Dorca, V. Amen);
  • семейных взаимоотношений («Анализ семейных взаимоотношений» (АСВ) опросник Э.Г. Эйдемиллера, В.В. Юстицкиса);
  • уровня интернальности-экстернальности (опросник Е.Ф. Бажина, Е.А. Голынкиной и А.М. Эткинда);
  • уровня эмоционального выгорания у педагогов (опросник В.В. Бойко);
  • связи элементов вербального интеллекта учащихся при разно профильном обучении (методика К.М. Гуревича и др.);
  • связи уровня эмпатии (методика В.В. Бойко) и удовлетворенностью браком (опросник В.В. Столина, Т.Л. Романовой, Г.П. Бутенко);
  • связи между социометрическим статусом подростков (тест Jacob L. Moreno) и особенностями стиля семейного воспитания (опросник Э.Г. Эйдемиллера, В.В. Юстицкиса);
  • структуры жизненных целей подростков, воспитанных в полных и неполных семьях (опросник Edward L. Deci, Richard M. Ryan Ryan).

Назначение рангового коэффициента корреляции

Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков.

Описание метода

Для подсчета ранговой корреляции Спирмена необходимо располагать двумя рядами значений, которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков (например, личностные профили по 16-факторному опроснику Р. Б. Кеттелла, иерархии ценностей по методике Р. Рокича, последовательности предпочтений в выборе из нескольких альтернатив и др.);

3) две групповые иерархии признаков;

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков. Как правило, меньшему значению признака начисляется меньший ранг.

Ограничения коэффициента ранговой корреляции

1) по каждой переменной должно быть представлено не менее 5 наблюдений;

2) коэффициент ранговой корреляции Спирмена при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений.

Коэффициент корреляции Спирмена

<хедер> addimport_exportmode_editdelete

Изменения случайных величин

arrow_upwardarrow_downwardXarrow_upwardarrow_downwardY

Размер страницы: 5102050100chevron_leftchevron_right

<хедер class="mdc-dialog__хедер">

Изменения случайных величин

X

Y

СохранитьОтменить <хедер class="mdc-dialog__хедер">

Источники

  • http://dip-psi.ru/koeffitsiyent-korrelyatsii-spirmena
  • https://planetcalc.ru/527/
  • http://forex365.ru/indicators/korrelyacionnyj-analiz-spirmena.html
  • https://www.psychol-ok.ru/statistics/spearman/
  • https://planetcalc.ru/987/

[свернуть]
Помогла статья? Оцените её
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд
Загрузка...