Принцип работы осциллятора для сварки

Что это такое

Осциллятор для сварки — это генератор, используемый для выработки тока высокой частоты, который связывает конец электрода и свариваемую поверхность без физического контакта. Устанавливается такое оборудование между сварочным аппаратом и держателем. Существуют отдельные устройства и входящие в корпус самого сварочника. Подобные аппараты могут работать по двум схемам:

  • Создавать кратковременный импульс, способствующий возбуждению дуги, не прикасаясь к изделию. Визуально, это выглядит как небольшая «молния», посылаемая с конца электрода на свариваемую поверхность. При достижении последней, и наличии предварительно подсоединенной массы на изделие, устанавливается контакт и становится возможно ведение шва. Сам импульс после розжига дуги затухает.
  • Поддерживать постоянное напряжение с высоким показателем V, которое накладывается на сварочный ток. Это позволяет одновременно вести сварку и сохранять стабильность горения дуги.

Применение осцилляторов

Осцилляторы для сварки, благодаря своим свойствам, широко используются в оборудовании для работы с цветными металлами. Когда требуется наложить шов на нержавейку, алюминий, или медь, то применение осциллятора позволяет быстро возбудить дугу и начать сварку, вместо утомительного постукивания и чирканья об изделие электродом.

Использовать это устройство удобно и для точного начала ведения шва. Сварщик устанавливает конец вольфрамовой иглы на ближний край соединения, опускает маску, и нажатием кнопки возбуждает дугу. Это значительно снижает последующую обработку изделия от следов касания электрода. Внедряют их и на аппараты по плазменной резке, позволяющие быстро приступить к процессу разделывания материала.

Осциллятор сварочный применяется еще и для работы с тонкими листами металлов. Как правило, ток инвертора в таких случаях выставляется на низких значениях, и малейшее удаление конца электрода из сварочной ванны ведет к прерыванию дуги. Внедрение в схему осциллятора позволяет стабилизировать электросварку в работе на малых токах.

Устройство осциллятора

Подобные аппараты интегрируются в цепь оборудования всегда между трансформатором или выпрямителем и сварочным держателем для электродов. Вследствие чего обеспечивается установление контакта и стабилизация работы. Большинство осцилляторов имеют похожее строение и включают в себя следующие узлы:

  • выпрямитель напряжения;
  • блок накопителя заряда из конденсаторов;
  • источник питания;
  • узел для формирования импульса, с колебательным контуром и разрядником;
  • блок управления;
  • газовый клапан (в аргоновых установках);
  • повышающий трансформатор;
  • датчик напряжения.

Принцип работы

Главная задача устройства для генерирования импульса — модернизировать входящее напряжение, повысив его частоту и показатель V, и уменьшив его длительность до интервала менее секунды. Работает эта схема следующим образом:

  1. На горелке нажимается кнопка и запускается электрическая цепь.
  2. Выпрямитель на входе выравнивает ток и делает его однонаправленным.
  3. Конденсаторы накапливают в себе напряжение для разряда.
  4. При высвобождении тока он поступает на колебательный контур, состоящий из обмоток трансформатора. Там же повышается значение V.
  5. Схема управления руководит высвобождением импульса.
  6. Параллельно с этим открывается газовый клапан.
  7. Импульс производит разряд, связывающий по воздуху конец электрода и изделие. Для этого на последнее должен быть подсоединен кабель массы.
  8. После прохождения по цепи сварочного тока, высокочастотный импульс прекращается. Шов ведется на установленных ранее настойках сварочного аппарата.
  9. Когда горение дуги окончено, осциллятор обеспечивает продувку аргоном горелки еще в течение 4 секунд. Это остужает вольфрамовый электрод и последний участок шва.

Разбираемся в конструкции и принципе действия осциллятора

Сварочные осцилляторы, способные работать с источниками переменного и постоянного тока, необходимы для того, чтобы одновременно повысить как величину напряжения, так и частоту электрического тока. Если на входе такого устройства напряжение составляет 220 В, а частота тока – 50 Гц, то на выходе уже получается 2500–3000 В и 150000–300000 Гц. Продолжительность импульсов, которые создает осциллятор, составляет десятки микросекунд. Мощность этих устройств, с помощью которых в сварочную цепь поступает ток высокой частоты и с большим значением напряжения, – 250–350 Вт.

Технические возможности, которыми обладает осциллятор, обеспечиваются его конструкцией и характеристиками его элементов.

Электрическую схему аппарата составляют следующие компоненты:

  • колебательный контур, выступающий в роли искрового генератора затухающих колебаний (в состав такого контура входят конденсатор и катушка индуктивности – подвижная обмотка высокочастотного трансформатора);
  • разрядник;
  • дроссельные катушки в количестве двух штук;
  • повышающий трансформатор;
  • трансформатор высокой частоты.
Читайте также:  Курс доллара США 19 сентября 2018 года по данным ЦБ РФ - график и таблица

Функциональная схема осциллятора

Функциональная схема осциллятора

Кроме того, осциллятор содержит элементы, обеспечивающие безопасность как самого устройства, так и сварщика. К таким элементам относятся конденсатор, защищающий сварщика от удара электрическим током, и предохранитель, размыкающий электрическую цепь при пробое конденсатора.

Осциллятор, который используется в паре со сварочным аппаратом, работает по следующему принципу. После прохождения по обмоткам повышающего трансформатора напряжение поступает на конденсатор колебательного контура и начинает заряжать его. Когда конденсатор заряжается до величины, предусмотренной его емкостью, он выдает разряд на разрядник, что приводит к пробою. После этого колебательный контур оказывается закороченным, что и вызывает возникновение резонансных затухающих колебаний. Высокочастотный ток, формирующий эти колебания, через блокировочный конденсатор и обмотку катушки поступает на сварочную дугу.

Пример изготовления платы осциллятора

Пример изготовления платы осциллятора

Блокировочный конденсатор устроен таким образом, что через него может свободно проходить только ток высокой частоты, отличающийся и большим значением напряжения. Низкочастотный ток через такой конденсатор проходить не способен из-за слишком большого сопротивления. Благодаря данной характеристике блокировочного конденсатора через него не может пройти и низкочастотный ток от сварочного аппарата, что защищает осциллятор от короткого замыкания.

Виды сварочных осцилляторов

Осциллятор, который при желании нетрудно сделать и своими руками, может относится к:

  • устройствам непрерывного действия;
  • аппаратам с импульсным питанием.

При помощи осцилляторов первого типа к сварочному току добавляется ток высокой частоты (150–250 кГц) и с большим значением напряжения (3000–6000 В). Зажигание такой дуги может осуществляться даже без прикосновения электрода к поверхности соединяемых заготовок, а горит дуга очень устойчиво даже при небольших значениях тока, поступающего от сварочного аппарата. Это возможно благодаря высокой частоте тока, который выдает осциллятор. Что важно, ток с такими характеристиками не опасен для сварщика, выполняющего работу с использованием этого устройства.

Параллельное или последовательное подключение осциллятора

Параллельное и последовательное подключение осциллятора

Электрическая схема, в которой задействован осциллятор первого типа, может предусматривать его параллельное или последовательное подключение. Большей эффективностью отличаются устройства, которые подключены к электрической цепи сварочного аппарата последовательно. Объясняется это тем, что в их схеме не применяют за ненадобностью защиту от высокого напряжения.

Сварочный осциллятор с импульсным питанием требуется преимущественно при сварке, которая выполняется на переменном токе. Кроме первоначального зажигания сварочной дуги, устройство такого типа обеспечивает ее поддержку при смене полярности переменного тока, которая происходит постоянно. Осцилляторы первого типа в условиях постоянной смены полярности переменного тока плохо справляются с повторным зажиганием дуги, что негативно сказывается на качестве выполнения сварочных операций.

К бесконтактному зажиганию сварочной дуги также способны осцилляторы, в электрической схеме которых имеются конденсаторы, накапливающие заряд от специального зарядного устройства. В те моменты, когда необходимо выполнить повторное зажигание дуги, эти конденсаторы разряжаются, и электрический ток их разряда подается в дуговой промежуток. Электрическая схема такого сварочного осциллятора содержит в себе устройство, которое обеспечивает синхронизацию разрядов конденсатора в те моменты, когда электрический ток дуги проходит через ноль.

Что касается правил использования осцилляторов, необходимо учесть, что сварку алюминия с их помощью выполняют на переменном токе, а нержавеющей стали – на постоянном токе прямой полярности.

Правила эксплуатации осцилляторов

Применение осциллятора для сварки алюминия, других цветных металлов или нержавеющей стали требует соблюдения ряда несложных правил, которые сделают работу с таким устройством комфортной и безопасной.

  • Использовать осцилляторы можно как в помещениях, так и вне их.
  • Не рекомендуется применение сварочных осцилляторов на открытом воздухе, если на улице идет дождь или снег.
  • Работать с такими устройствами разрешается при температуре окружающего воздуха от –10 до +40 градусов Цельсия.
  • Использовать осцилляторы допустимо при уровне влажности окружающего воздуха, не превышающей 98%.
  • Атмосферное давление, при котором можно использовать такие устройства, должно находиться в интервале 85–106 килопаскалей.
  • Не рекомендуется использовать такое устройство в помещениях, атмосфера которых сильно загрязнена пылью, едкими парами и газами, которые могут разрушить изоляцию и металл.
  • Начинать работу со сварочным осциллятором можно лишь в том случае, если он надежно заземлен.
  • Перед началом работы всегда следует проверять, правильно ли устройство подключено в сварочную цепь и исправны ли его контакты.
  • Кожух осциллятора в процессе выполнения сварочных работ всегда должен быть надет на него, снимать его можно только тогда, когда устройство отключено от электрической сети.
  • Рабочая поверхность разрядника должна всегда содержаться в чистоте, на ней не должно быть следов нагара. В случае появления нагара от него необходимо избавиться с помощью шлифовальной шкурки.
Читайте также:  Как пользоваться индикатором ATR?

Такое устройство, которое поможет вам выполнять сварку цветных металлов и нержавейки, можно не только купить, но и сделать своими руками.

Принцип работы.

Базовый принцип работы осцилляторов может быть объяснён анализом поведения колебательного LC-контура схемы, показанной на рисунке 1, которая задействует индуктор L и предварительно полностью заряженный конденсатор C. Конденсатор начинает разряжаться через индуктор, что является следствием превращения его электрической энергии в электромагнитное поле. Это поле может быть аккумулировано индуктором.

Однажды конденсатор разряжается полностью, и в схеме нет электрического тока. Как бы там ни было, после этого аккумулированное электромагнитное поле генерирует противоэлектродвижущую силу, что происходит из-за движения тока через схему в том же направлении, что и ранее.

Этот поток тока через схему продолжается вплоть до того момента, пока не разрушится электромагнитное поле, что является результатом обратного преобразования электромагнитной энергии в электрическую форму, вынуждая цикл повторяться. Как бы там ни было, теперь конденсатор заряжается с отрицательной полярностью, благодаря чему и получается осциллирующая форма волны на выходе.

Осциллятор

Рисунок 1 Схема колебательного LC-контура

 

Как бы там ни было, колебания, которые появляются из-за взаимопревращения двух форм энергии, не могут длиться вечно, ведь они подвержены эффекту потери энергии из-за сопротивления схемы. В результате амплитуда этих колебаний постоянно уменьшается, стремясь к нулю. Колебания просто исчезают естественным образом.

 

Это показывает, что нужно получить колебания, которые продолжаются во времени и имеют постоянную амплитуду, которая нужна для компенсации потери энергии. Тем не менее, важно отметить, что поступающая энергия должна точно контролироваться, и она должна быть равна потерянной энергии для получения колебаний с постоянной амплитудой.

 

Если энергии будет поступать больше, чем теряться, то амплитуда колебаний будет возрастать (Рисунок 2a), что приведёт к искаженному выходу. Если энергии, которая поступает, будет меньше, чем той, которая теряется, то амплитуда колебаний будет уменьшаться (Рисунок 2b), приводя к недостаточным колебаниям.

Осциллятор

Рисунок 2 (a) Возрастающие Колебания (b) Затухающие Колебания (с) Колебания с Постоянной Амплитудой

 

Фактически, осцилляторы являются ни чем иным как усилителями схемы, которые производятся с позитивной или восстанавливающей обратной связью, где часть сигнала на выходе является обратной связью со входом (Рисунок 3). Здесь усилитель содержит активный усиливающий элемент, который может быть транзистором или операционным усилителем, и синфазный сигнал обратной связи является ответственным за поддержку колебаний за счёт завершения потерь в схеме.

Осциллятор

Рисунок 3 Типичный осциллятор

 

Когда блок питания включен, осцилляторы начинают работу из-за наличия электронного шума. Эти шумовые сигналы повторяются по циклу, усиливаются и сходятся в одночастотную синусоидальную волну очень быстро. Выражение коэффициента усиления закрытого цикла осциллятора, показанного на рисунке 3, выглядит как:

 

Безымянный

 

Здесь A является коэффициентом усиления напряжения усилителя и ß является коэффициентом усиления схемы обратной связи. Если Aß > 1, то колебания будут усиливаться в амплитуде (Рисунок 2a). Если же Aß < 1, то колебания будут затухать (Рисунок 2b). Если Aß = 1, то колебания будут иметь постоянную амплитуду (Рисунок 2c).

 

Другими словами, это указывает на то, что если коэффициент усиления цикла обратной связи мал, то колебания затухают, в то время как при большом коэффициенте результат на выходе искажается. И только если данный коэффициент равен единице, у колебаний будет постоянная амплитуда, порождающая самостоятельный цикл колебаний.

 

Осцилляторы делятся на две категории, а именно на линейные или синусоидальные осцилляторы и разряжающие осцилляторы. В синусоидальных осцилляторах поток энергии всегда идёт от активных элементов схемы к пассивным, и частота колебаний определяется за счёт обратной связи.

 

Как бы там ни было, в случае с разряжающими осцилляторами, происходит обмен энергии между активными и пассивными компонентами, и частота колебаний определяется за счёт зарядки и разрядки стационарных элементов, вовлечённых в процесс. Синусоидальные осцилляторы производят слабо изменяющиеся синусоидальные волны на выходе. Разряжающие осцилляторы создают несинусоидальные формы волн (пилообразные, треугольные или квадратные).

 

Осцилляторы построенные на одной сигнальной линии

Стоит принимать во внимание только те сигналы, которые не противоречат доминирующему направлению цены. Другие пересечения сигнальной линии, будут менее значимыми сигналами для входа позицию. Уровни перекупленности/перепроданности подают сигналы на то, что изменение цены в данный момент времени совершается достаточно быстро, а это говорит нам о том, что цена возможно будет корректироваться.

Читайте также:  Основы трейдинга: технический и фундаментальный анализ

К тому же, графику осциллятора характерно достижение over-зоны, непосредственно перед завершением тенденции, в случае, если в начале хода тренда, цены изменялись значительным образом.

Сам осциллятор, может держаться в таком критическом диапазоне достаточно долго, по мере последующего развития тенденции. В таком случае выходит, что самый точный сигнал формируется в то время, когда осциллятор делает несколько колебаний в критическом диапазоне, а потом покидает его.

К наиболее результативным сигналам осциллятора можно отнести дивергенцию, (расхождение). Определяется такой сигнал, в то время когда ценовой график формирует новый максимум, который выше предыдущего, в то время как осциллятор такой новый пик не подтверждает. Как правило, высота дивергенции (расхождения), не оказывает влияния на силу будущего изменения цены.

Кроме того, такие проверенные временем инструменты, как трендовые линии, уровни сопротивления и поддержки дают отличный результат и на графиках осцилляторов. Не менее эффективность приносит построение скользящих средних на графиках осцилляторов. Принцип работы с ними тот же самый, что и при анализе стандартного ценового графика.

К лучшим осцилляторам на Форекс относятся:

  • Осциллятор момент (в переводе мomentum)
    MACD (гистограмма)
  • Ценовой осциллятор (с англ. Price Oscillators).
  • Скорость изменения (с англ. осциллятор ROC)
  • Индекс относительной силы (с англ.  RSI сокр.)
  • Осциллятор — Стохастика, (с англ. Stochastics Oscillator).
  • Осциллятор %R Уильямса.[/greencheckbox]

С позиции технического анализа, индикатор осциллятора может быть применен для прогнозирования возможности тенденции через изменчивость роста рынка. А рост рынка обусловливает темп ценового движения. Система построения всех осцилляторов схожа, в связи с этим мы разберем только самые важные.

Осциллятор знает – перекупленность или перепроданность

индикатор rsi, индикатор стохастик
Любой осциллятор призван дать ответ на вопрос: «Находится ли рынок в состоянии перекупленности или он перепродан?». Если акция выросла слишком сильно, считается, что она перекуплена, а значит высока вероятность отката вниз перед последующим ростом – таким образом, цене необходимо как бы освоиться на вновь достигнутом уровне, для того чтобы продолжить восходящее движение. Ситуация с перепроданностью обратна – цена слишком быстро падала и ей необходимо время, чтобы снова его продолжить. Перед новым падением возрастает вероятность отката . В момент глубокой перепроданности нужно покупать акцию, а в период перекупленности – продавать.

Расхождение (дивергенция)

Другим важным свойством, которым обладает любой осциллятор, является предупреждение о возможной перемене тенденции. В тот момент, когда показатели индикатора сигнализируют о падении, но цена вопреки этому продолжается расти (т.е. происходит расхождение или дивергенция) – это является признаком того, что тенденция начинает терять силу и нужно быть готовым к появлению противоположного тренда.

Самые популярные осцилляторы

Осциллятор ROC – индикатор скорости и темпа

Осциллятор ROC показывает техническому аналитику как ведет себя преобладающая рыночная тенденция – наращивает ли она тем или теряет его. Важным элементом здесь является нулевая линия, вокруг которой двигается осциллятор ROC. Если значение поднимается выше нулевой линии – это сигнал на покупку (long). Пересечение индикатором нулевой отметки вниз генерирует сигнал short (на продажу).

стохастик осциллятор

Расхождение ROC с ценовым движением (цена растет, а индикатор снижается) предупреждает о потере тенденцией темпа, в результате после пересечения нулевой черты рынок двинулся вниз, и открытая позиция short принесла трейдеру прибыль.

Недостатком данного инструмента является его неспособность показать точные периоды перекупленности и перепроданности.

Осциллятор RSI

Индекс относительной силы RSI более «умный» осциллятор, по сравнению с рассмотренным выше, т.к. показывает конкретные области перекупленного или перепроданного рынка. RSI.

Стохастический осциллятор

Стохастический осциллятор является более волатильной версией RSI, обладая при этом некоторыми дополнительными элементами, такими как скользящая средняя сигнальной линии, что дает некоторое преимущество при анализе движения цены и при прогнозировании ее будущего движения. Подробнее о стохастике.

Комбинации из нескольких осцилляторов

Какой осциллятор выбрать при построении собственной торговой системы? Анализ прошлого показывает, что более качественные торговые сигналы возникают в результате комбинации двух или более индикаторов.

индикатор rsi, индикатор стохастик

Так, например, тандем RSI и Стохастика позволяет отфильтровать некоторые торговые сигналы, полученные в результате анализа более волатильного Стохастика – когда трейдер открывает сделку, опираясь на одинаковый сигнал двух разных индикаторов, вероятность прибыльного трейда возрастает в разы, при этом слабые сигналы остаются в стороне. Помимо этого значительно сокращаются комиссионные издержки, ведь из 17 сделок достаточно будет совершить только 4.

Источники

  • https://svarkalegko.com/oborudovanie/oscillyator.html
  • http://met-all.org/oborudovanie/svarochnye/svarochnyj-oscillyator-svoimi-rukami.html
  • http://elektronchic.ru/elektronika/chto-takoe-oscillyator.html
  • http://InfoFx.ru/texnicheskij-analiz-rynka/oscillyatory/
  • http://stock-list.ru/oscillator.html

[свернуть]
Помогла статья? Оцените её
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд
Загрузка...