Генеральная и выборочная совокупности, выборки

Способы отбора

Рассмотрим теперь различные способы отбора (схема 1).

Способы отбора.

Рисунок 1. Способы отбора.

Разберемся теперь с каждым понятием по отдельности.

Определение 7

Простой случайный бесповторный отбор — отбор, при котором объекты из генеральной совокупности выбираются по одному и не возвращаются обратно в генеральную совокупность.

Определение 8

Простой случайный повторный отбор — отбор, при котором объекты из генеральной совокупности выбираются по одному и возвращаются обратно в генеральную совокупность.

Определение 9

Типический отбор — отбор, при котором выборка производится не из всей генеральной совокупности, а из каждой его части по отдельности.

Пример 3

К примеру, если сметана произведена на трех разных заводах, то выборка делается по каждому заводу отдельно.

Определение 10

Механический отбор — отбор, при котором генеральная совокупность делится на такое количество групп сколько объектов для исследования необходимо выбрать.

Пример 4

Пусть из партии 100 пачек масла нужно для исследования отобрать $10%$. Тогда выбирается по одной пачке из каждых 10 пачек масла.

!!! Отметим, что при таком отборе выборка не всегда получается репрезентативной.

Определение 11

Серийный отбор — отбор, при котором выборка происходит из генеральной совокупности не по одному, а сериями.

!!! На практике часто применяется комбинированный отбор, при котором используются сразу несколько видов отборов, перечисленных выше.

Формулы, связанные с понятием выборки

Введем несколько формул:

  1. Генеральная средняя при повторной выборке:

Отметим, что $sum{N_i}=N$

  1. Генеральная средняя при бесповторной выборке:
  1. Выборочная средняя при повторной выборке:

Отметим, что $sum{n_i}=n$

  1. Выборочная средняя при бесповторной выборке:
  1. Ошибка репрезентативности:

Выборка – это… Определение, виды, методы и результаты выборки

От Masterweb

09.04.2018 16:00 26045 0

Доступна после регистрации

Часто бывает так, что необходимо проанализировать какое-либо конкретное социальное явление и получить информацию о нем. Такие задания часто возникают в статистике и при статистических исследованиях. Проверить полностью определенное социальное явление чаще всего бывает невозможным. Например, как узнать мнение населения или всех жителей определенного города по какому-либо вопросу? Спрашивать абсолютно всех – дело практически невозможное и очень трудоемкое. В таких случаях нам и необходима выборка. Это именно то понятие, на котором основаны практически все исследования и анализы.

Что такое выборка

При анализе конкретного социального явления необходимо получить информацию о нем. Если взять любое исследование, то можно заметить, что исследованию и анализу подлежит не каждая единица совокупности объекта исследования. Во внимание берется только определенная часть всей этой совокупности. Вот этот процесс и является выборкой: когда исследуются только определенные единицы из множества.

Конечно же, многое зависит от вида выборки. Но есть и основные правила. Главное из них гласит, что отбор из совокупности должен быть абсолютно случайным. Единицы совокупности, которые будут использованы, не должны быть выбраны из-за какого-либо критерия. Грубо говоря, если необходимо набрать совокупность из населения определенного города и отобрать только мужчин, то в исследовании будет ошибка, потому что отбор был проведен не случайно, а отобран по гендерному признаку. Практически все методы выборки основаны на этом правиле.

Выборка - это... Определение, виды, методы и результаты выборки

Правила выборки

Для того чтобы отобранная совокупность отражала основные качества всего явления, она должна быть построена по конкретным законам, где основное внимание необходимо уделять следующим категориям:

  • выборка (выборочная совокупность);
  • генеральная совокупность;
  • репрезентативность;
  • ошибка репрезентативности;
  • единица совокупности;
  • способы построения выборки.

Особенности выборочного наблюдения и составления выборки заключаются в следующем:

  1. Все полученные результаты основаны на математических законах и правилах, то есть при правильном проведении исследования и при правильных расчетах результаты не будут искажены по субъективному признаку
  2. Дает возможность значительно быстрее и с меньшими затратами времени и ресурсов получить результат, изучая не весь массив событий, а только их часть.
  3. Может быть применено для изучения различных объектов: от конкретных вопросов, например, возраст, пол интересующей нас группы, к изучению общественного мнения или уровня материального обеспечения населения.

Выборочное наблюдение

Выборочное – это такое статистическое наблюдение, при котором исследованию подвергается не вся совокупность изучаемого, а лишь некоторая, отобранная определенным образом ее часть, а полученные результаты изучения этой части распространяются на всю совокупность. Эта часть называется выборочной совокупностью. Это единственный способ изучения большого массива объекта исследования.

Но выборочное наблюдение может использоваться только в тех случаях, когда необходимо исследовать лишь малую группу единиц. Например, при исследовании соотношения мужчин к женщинам в мире, будет использоваться выборочное наблюдение. По понятным причинам – взять во внимание каждого жителя нашей планеты невозможно.

А вот при таком же исследовании, но не всех жителей земли, а определенного 2 «А» класса в конкретной школе, определенного города, определенной страны, может обойтись без выборочного наблюдения. Ведь проанализировать весь массив объекта исследования – вполне возможно. Необходимо посчитать мальчиков и девочек этого класса – вот и будет соотношение.

Выборка - это... Определение, виды, методы и результаты выборки

Выборочная и генеральная совокупность

На самом деле все не так сложно, как звучит. В любом объекте изучения есть две системы: генеральная и выборочная совокупность. Что же это такое? Все единицы относятся к генеральной. А к выборочной – те единицы общей совокупности, которые были взяты для выборки. Если все правильно сделано, то отобранная часть будет составлять уменьшенный макет всей (генеральной) совокупности.

Если говорить о генеральной совокупности, то можно выделить всего две ее разновидности: определенная и неопределенная генеральная совокупность. Зависит от того, известно ли общее количество единиц данной системы или нет. Если это определенная генеральная совокупность, то выборку будет делать легче из-за того, что известно, какой процент от общего количества единиц будет составлять выборка.

Этот момент очень необходим в исследованиях. Например, если необходимо исследовать процент недоброкачественной продукции кондитерских изделий на конкретном заводе. Допустим, что генеральная совокупность уже определена. Точно известно, что в год это предприятие производит 1000 кондитерских изделий. Если сделать выборку 100 случайных кондитерских изделий из этой тысячи и отправить их на экспертизу, то погрешность будет минимальной. Грубо говоря, исследованию подлежало 10 % всей продукции, и по результатам можем, приняв во внимание ошибку репрезентативности, говорить о недоброкачественности всей продукции.

Читайте также:  Дропшиппинг товары для одностраничников в Москве

А если провести выборку 100 кондитерских изделий из неопределенной генеральной совокупности, где их на самом деле было, допустим, 1 млн единиц, то результат выборки и самого исследования будет критически неправдоподобным и неточным. Чувствуете разницу? Поэтому определенность генеральной совокупности в большинстве случаев крайне важна и очень сильно влияет на результат исследования.

Выборка - это... Определение, виды, методы и результаты выборки

Репрезентативность совокупности

Итак, теперь один из самых главных вопросов – какой должна быть выборка? Это самый главный момент исследования. На этом этапе необходимо рассчитать выборку и отобрать единицы из общего числа в нее. Совокупность была отобрана правильно, если определенные особенности и характеристики генеральной совокупности остается и в выборочной. Это называется репрезентативностью.

Иными словами, если после отбора часть сохраняет те же самые тенденции и особенности что и все количество исследуемого, то такая совокупность называется репрезентативной. Но не каждая определенная выборка может быть отобрана из репрезентативной совокупности. Бывают и такие объекты исследования, выборка которых просто не может быть репрезентативной. Отсюда и возникает понятие ошибки репрезентативности. Но об этом поговорим подробнее чуть больше.

Как сделать выборку

Итак, чтобы репрезентативность была максимальной, выделяют три основные правила выборки:

  1. Самым уникальным показателем числа выборки считается 20 %. Статистическая выборка в 20 % будет практически всегда давать результат максимально приближенный к действительности. В то же самое время нет необходимости переносить в собранную большую часть генеральной совокупности. 20 % выборки – это тот показатель, который выработан многими исследованиями. Приведем еще немного теории. Чем больше выборка, тем меньше ошибка репрезентативности и точнее результат исследования. Чем ближе будет выборочная совокупность к генеральной по количеству единиц, тем более точными и правильными будут результаты. Ведь если исследовать всю систему, тогда результат будет 100 %. Но здесь уже нет выборки. Это те исследования, в которых исследуется весь массив, все единицы, поэтому это нас не интересует.
  2. В случае нецелесообразности обработки 20 % генеральной совокупности допускается изучение единиц совокупности в количестве не менее 1001. Это также один из показателей исследования массива объекта исследования, который выработался со временем. Конечно же, он не даст точных результатов при больших массивах исследования, но максимально приблизит к возможной точности выборки.
  3. В статистике существует множество формул и сведенных таблиц. В зависимости от объекта исследования и от критерия выборки, существует целесообразность выбора той или иной формулы. Но этот пункт используется в сложных и многоэтапных исследованиях.

Погрешность (ошибка) репрезентативности

Главной характеристикой качества выбранной выборки является понятие «погрешности репрезентативности». Что же это такое? Это определенные расхождения между показателями выборочного и сплошного наблюдения. По показателям погрешности репрезентативность делят на надежную, обычную и приближенную. Иначе говоря, допустимыми являются отклонения в размере до 3 %, от 3 до 10 % и от 10 до 20 % соответственно. Хотя в статистике желательно, чтобы погрешность не превышал 5-6 %. В противном случае есть повод говорить о недостаточной репрезентативности выборки. Для вычисления погрешности репрезентативности и того, как она влияет на выборочную или генеральную совокупность, во внимание берутся многие факторы:

  1. Вероятность, с которой необходимо получить точный результат.
  2. Количества единиц выборочной совокупности. Как уже упоминалось ранее, чем меньше единиц составит выборка, тем больше будет ошибка репрезентативности, и наоборот.
  3. Однородность исследуемой совокупности. Чем более разнородной является совокупность, тем больше будет погрешность репрезентативности. Возможность совокупности быть репрезентативной зависит от однородности всех ее составляющих единиц.
  4. Способ отбора единиц в выборочную совокупность.

В конкретно заданных исследованиях процент погрешности среднего значения обычно задается самим исследователем на основании программы наблюдения и согласно данным ранее проведенных исследований. Как правило, считается допустимой предельная ошибка выборки (ошибка репрезентативности) в пределах 3-5 %.

Выборка - это... Определение, виды, методы и результаты выборки

Больше – не всегда лучше

Также стоит помнить, что главное при организации выборочного наблюдения – это доведение его объема до допустимого минимума. При этом не следует стремиться к чрезмерному уменьшению границ погрешности выборки, так как это может привести к неоправданному увеличению объема данных выборки и, следовательно, к повышению расходов на проведение выборочного наблюдения.

В то же время нельзя и чрезмерно увеличивать размер погрешности репрезентативности. Ведь в этом случае, хотя и произойдет уменьшение объема выборочной совокупности, это приведет к ухудшению достоверности полученных результатов.

Какие вопросы обычно ставится перед исследователем

Любое исследование если и проводится, то для какой-то цели и для получения каких-то результатов. При проведении выборочного исследования, как правило, ставятся начальные вопросы:

  1. Определение необходимого количества единиц выборочной совокупности, то есть то, сколько единиц будет исследоваться. К тому же, для точного исследования совокупность должна быть репрезентативной.
  2. Расчет погрешности репрезентативности с установленным уровнем вероятности. Сразу стоит отметить, что выборочных исследований не бывает с уровнем вероятности 100 %. Если та инстанция, которая проводила изучение определенного сегмента, утверждает, что их результаты точны с вероятностью 100 %, то это ложь. Многолетняя практика уже установила процент вероятности правильно проведенного выборочного исследования. Этот показатель равняется 95,4 %.

Объём выборки

Объём выборки — число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30 – 35.

Зависимые и независимые выборки

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми. Примеры зависимых выборок:

·                  пары близнецов,

·                  два измерения какого-либо признака до и после экспериментального воздействия,

·                  мужья и жёны

·                  и т. п.

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми, например:

Читайте также:  Заявление (бланк) на получение имущественного налогового вычета при покупке квартиры 2017

·                  мужчины и женщины,

·                  психологи и математики.

Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.

Сравнение выборок производится с помощью различных статистических критериев:

·                  t-критерий Стьюдента

·                  Критерий Уилкоксона

·                  U-критерий Манна-Уитни

·                  Критерий знаков

·                  и др.

Репрезентативность

Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной.

Пример нерепрезентативной выборки

В США одним из наиболее известных исторических примеров нерепрезентативной выборки считается случай, происшедший во время президентских выборов в 1936 году[1]. Журнал «Литрери Дайджест», успешно прогнозировавший события нескольких предшествующих выборов, ошибся в своих предсказаниях, разослав десять миллионов пробных бюллетеней своим подписчикам, а также людям, выбранным по телефонным книгам всей страны и людям из регистрационных списков автомобилей. В 25 % вернувшихся бюллетеней (почти 2,5 миллиона) голоса были распределены следующим образом:

·                  57 % отдавали предпочтение кандидату-республиканцу Альфу Лэндону

·                  40 % выбрали действующего в то время президента-демократа Франклина Рузвельта

На действительных же выборах, как известно, победил Рузвельт, набрав более 60 % голосов. Ошибка «Литрери Дайджест» заключалась в следующем: желая увеличить репрезентативность выборки, — так как им было известно, что большинство их подписчиков считают себя республиканцами, — они расширили выборку за счёт людей, выбранных из телефонных книг и регистрационных списков. Однако они не учли современных им реалий и в действительности набрали ещё больше республиканцев: во время Великой депрессии обладать телефонами и автомобилями могли себе позволить в основном представители среднего и высшего класса (то есть большинство республиканцев, а не демократов).

Виды плана построения групп из выборок

Выделяют несколько основных видов плана построения групп[2]:

1.               Исследование с экспериментальной и контрольной группами, которые ставятся в разные условия.

2.               Исследование с экспериментальной и контрольной группами с привлечением стратегии попарного отбора

3.               Исследование с использованием только одной группы — экспериментальной.

4.               Исследование с использованием смешанного (факторного) плана — все группы ставятся в разные условия.

Типы выборки

Выборки делятся на два типа:

·                  вероятностные

·                  невероятностные

Вероятностные выборки

1.               Простая вероятностная выборка:

o        Простая повторная выборка. Использование такой выборки основывается на предположении, что каждый респондент с равной долей вероятности может попасть в выборку. На основе списка генеральной совокупности составляются карточки с номерами респондентов. Они помещаются в колоду, перемешиваются и из них наугад вынимается карточка, записывается номер, потом возвращается обратно. Далее процедура повторяется столько раз, какой объём выборки нам необходим. Минус: повторение единиц отбора.

Процедура построения простой случайной выборки включает в себя следующие шаги:

1. необходимо получить полный список членов генеральной совокупности и пронумеровать этот список. Такой список, напомним, называется основой выборки;

2. определить предполагаемый объем выборки, то есть ожидаемое число опрошенных;

3. извлечь из таблицы случайных чисел столько чисел, сколько нам требуется выборочных единиц. Если в выборке должно оказаться 100 человек, из таблицы берут 100 случайных чисел. Эти случайные числа могут генерироваться компьютерной программой.

4. выбрать из списка-основы те наблюдения, номера которых соответствуют выписанным случайным числам

·                  Простая случайная выборка имеет очевидные преимущества. Этот метод крайне прост для понимания. Результаты исследования можно распространять на изучаемую совокупность. Большинство подходов к получению статистических выводов предусматривают сбор информации с помощью простой случайной выборки. Однако метод простой случайной выборки имеет как минимум четыре существенных ограничения:

1. зачастую сложно создать основу выборочногo наблюдения, которая позволила бы провести простую случайную выборку.

2. результатом применения простой случайной выборки может стать большая совокупность, либо совокупность, распределенная по большой географической территории, что значительно увеличивает время и стоимость сбора данных.

3. результаты применения простой случайной выборки часто характеризуются низкой точностью и большей стандартной ошибкой, чем результаты применения других вероятностных методов.

4. в результате применения SRS может сформироваться нерепрезентативная выборка. Хотя выборки, полученные простым случайным отбором, в среднем адекватно представляют генеральную совокупность, некоторые из них крайне некорректно представляют изучаемую совокупность. Вероятность этого особенно велика при небольшом объеме выборки.

·                  Простая бесповторная выборка. Процедура построения выборки такая же, только карточки с номерами респондентов не возвращаются обратно в колоду.

1.               Систематическая вероятностная выборка. Является упрощенным вариантом простой вероятностной выборки. На основе списка генеральной совокупности через определённый интервал (К) отбираются респонденты. Величина К определяется случайно. Наиболее достоверный результат достигается при однородной генеральной совокупности, иначе возможны совпадение величины шага и каких-то внутренних циклических закономерностей выборки (смешение выборки). Минусы: такие же как и в простой вероятностной выборке.

2.               Серийная (гнездовая) выборка. Единицы отбора представляют собой статистические серии (семья, школа, бригада и т. п.). Отобранные элементы подвергаются сплошному обследованию. Отбор статистических единиц может быть организован по типу случайной или систематической выборки. Минус: Возможность большей однородности, чем в генеральной совокупности.

3.               Районированная выборка. В случае неоднородной генеральной совокупности, прежде, чем использовать вероятностную выборку с любой техникой отбора, рекомендуется разделить генеральную совокупность на однородные части, такая выборка называется районированной. Группами районирования могут выступать как естественные образования (например, районы города), так и любой признак, заложенный в основу исследования. Признак, на основе которого осуществляется разделение, называется признаком расслоения и районирования.

4.               «Удобная» выборка. Процедура «удобной» выборки состоит в установлении контактов с «удобными» единицами выборки — с группой студентов, спортивной командой, с друзьями и соседями. Если необходимо получить информацию о реакции людей на новую концепцию, такая выборка вполне обоснована. «Удобную» выборку часто используют для предварительного тестирования анкет.

Понятие и виды выборочного наблюдения

Выборочное наблюдение применяется, когда применение сплошного наблюдения физически невозможно из-за большого массива данных или экономически нецелесообразно. Физическая невозможность имеет место, например, при изучении пассажиропотоков, рыночных цен, семейных бюджетов. Экономическая нецелесообразность имеет место при оценке качества товаров, связанной с их уничтожением, например, дегустация, испытание кирпичей на прочность и т.п.

Статистические единицы, отобранные для наблюдения, составляют выборочную совокупность или выборку, а весь их массив – генеральную совокупность (ГС). При этом число единиц в выборке обозначают n, а во всей ГС – N. Отношение n/N называется относительный размер или доля выборки.

Качество результатов выборочного наблюдения зависит от репрезентативности выборки, то есть от того, насколько она представительна в ГС. Для обеспечения репрезентативности выборки необходимо соблюдать принцип случайности отбора единиц, который предполагает, что на включение единицы ГС в выборку не может повлиять какой-либо иной фактор кроме случая.

Читайте также:  Неналоговые преступления бухгалтеров

Существует 4 способа случайного отбора в выборку:

  1. Собственно случайный отбор или «метод лото», когда статистическим величинам присваиваются порядковые номера, заносимые на определенные предметы (например, бочонки), которые затем перемешиваются в некоторой емкости (например, в мешке) и выбираются наугад. На практике этот способ осуществляют с помощью генератора случайных чисел или математических таблиц случайных чисел.
  2. Механический отбор, согласно которому отбирается каждая (N/n)-я величина генеральной совокупности. Например, если она содержит 100 000 величин, а требуется выбрать 1 000, то в выборку попадет каждая 100 000 / 1000 = 100-я величина. Причем, если они не ранжированы, то первая выбирается наугад из первой сотни, а номера других будут на сотню больше. Например, если первой оказалась единица № 19, то следующей должна быть № 119, затем № 219, затем № 319 и т.д. Если единицы генеральной совокупности ранжированы, то первой выбирается № 50, затем № 150, затем № 250 и так далее.
  3. Отбор величин из неоднородного массива данных ведется стратифицированным (расслоенным) способом, когда генеральная совокупность предварительно разбивается на однородные группы, к которым применяется случайный или механический отбор.
  4. Особый способ составления выборки представляет собой серийный отбор, при котором случайно или механически выбирают не отдельные величины, а их серии (последовательности с какого-то номера по какой-то подряд), внутри которых ведут сплошное наблюдение.

Качество выборочных наблюдений зависит и от типа выборки: повторная или бесповторная.
При повторном отборе попавшие в выборку статистические величины или их серии после использования возвращаются в генеральную совокупность, имея шанс попасть в новую выборку. При этом у всех величин генеральной совокупности одинаковая вероятность включения в выборку.
Бесповторный отбор означает, что попавшие в выборку статистические величины или их серии после использования не возвращаются в генеральную совокупность, а потому для остальных величин последней повышается вероятность попадания в следующую выборку.

Бесповторный отбор дает более точные результаты, поэтому применяется чаще. Но есть ситуации, когда его применить нельзя (изучение пассажиропотоков, потребительского спроса и т.п.) и тогда ведется повторный отбор.

Ошибки выборки

Выборочную совокупность можно сформировать по количественному признаку статистических величин, а также по альтернативному или атрибутивному. В первом случае обобщающей характеристикой выборки служит выборочная средняя величина, обозначаемая , а во втором — выборочная доля величин, обозначаемая w. В генеральной совокупности соответственно: генеральная средняя и генеральная доля р.

Разности — и W — р называются ошибкой выборки, которая делится на ошибку регистрации и ошибку репрезентативности. Первая часть ошибки выборки возникает из-за неправильных или неточных сведений по причинам непонимания существа вопроса, невнимательности регистратора при заполнении анкет, формуляров и т.п. Она достаточно легко обнаруживается и устраняется. Вторая часть ошибки возникает из-за постоянного или спонтанного несоблюдения принципа случайности отбора. Ее трудно обнаружить и устранить, она гораздо больше первой и потому ей уделяется основное внимание.

Величина ошибки выборки может быть разной для разных выборок из одной генеральной совокупности, поэтому в статистике определяется средняя ошибка повторной и бесповторной выборки по формулам:

– повторная;

– бесповторная;

где Дв — выборочная дисперсия.

Например, на заводе с численностью работников 1000 чел. проведена 5%-ая случайная бесповторная выборка с целью определения среднего стажа работников. Результаты выборочного наблюдения приведены в первых двух столбцах следующей таблицы:

X, лет
(стаж работы)

f, чел.
(число работников в выборке)

Xиf

до 1

7

0,5

3,5

38,987

1-2

8

1,5

12,0

14,797

2-3

10

2,5

25,0

1,296

3-4

13

3,5

45,5

5,325

4-5

9

4,5

40,5

24,206

более 5

3

5,5

16,5

20,909

Итого

50

 

143,0

105,520

В 3-м столбце определены середины интервалов X (как полусумма нижней и верхней границ интервала), а в 4-м столбце – произведения XИf для нахождения выборочной средней по формуле средней арифметической взвешенной:

= 143,0/50 = 2,86 (года).

Рассчитаем выборочную дисперсию взвешенную:
= 105,520/50 = 2,110.

Теперь найдем среднюю ошибку бесповторной выборки:
= 0,200 (лет).

Из формул средних ошибок выборки видно, что ошибка меньше при бесповторной выборке, и, как доказано в теории вероятностей, она возникает с вероятностью 0,683 (то есть если провести 1000 выборок из одной генеральной совокупности, то в 683 из них ошибка не превзойдет средней ошибки выборки). Такая вероятность (0,683) является невысокой, поэтому она мало пригодна для практических расчетов, где нужна более высокая вероятность. Чтобы определить ошибку выборки с более высокой, чем 0,683 вероятностью, рассчитывают предельную ошибку выборки:

где t – коэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки.

Значения коэффициента доверия t рассчитаны для разных вероятностей и имеются в специальных таблицах (интеграл Лапласа), из которых в статистике широко применяются следующие сочетания:

Вероятность 0,683 0,866 0,950 0,954 0,988 0,990 0,997 0,999
t 1 1,5 1,96 2 2,5 2,58 3 3,5

Задавшись конкретным уровнем вероятности, выбирают из таблицы соответствующую ей величину t и определяют предельную ошибку выборки по формуле.
При этом чаще всего применяют  = 0,95 и t= 1,96, то есть считают, что с вероятностью 95% предельная ошибка выборки в 1,96 раза больше средней. Такая вероятность (0,95) считается стандартной и применяется по умолчанию в расчетах.

В нашем примере про средний стаж работников, определим предельную ошибку выборки при стандартной 95%-ой вероятности (из таблицы берем t = 1,96 для 95%-ой вероятности):
= 1,96*0,200 = 0,392 (года).

После расчета предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности. Такой интервал для генеральной средней величины имеет вид

а для генеральной доли аналогично:

.
Следовательно, при выборочном наблюдении определяется не одно, точное значение обобщающей характеристики генеральной совокупности, а лишь ее доверительный интервал с заданным уровнем вероятности. И это серьезный недостаток выборочного метода статистики.

В нашем примере про средний стаж работников, определим доверительный интервал генеральной средней – среднего стажа работников:

2,86 – 0,392 2,86 + 0,392 или
2,468 лет 3,252 лет.
То есть средний стаж работников на всем заводе лежит в интервале от 2,468 года до 3,252 года.

Источники

  • https://spravochnick.ru/matematika/generalnaya_i_vyborochnaya_sovokupnosti_vyborki/
  • https://www.nastroy.net/post/vyiborka—eto-opredelenie-vidyi-metodyi-i-rezultatyi-vyiborki
  • http://oftob.ru/%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F-%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0/422-%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F-%D1%81%D0%BE%D0%B2%D0%BE%D0%BA%D1%83%D0%BF%D0%BD%D0%BE%D1%81%D1%82%D1%8C-%D0%B8-%D0%B2%D1%8B%D0%B1%D0%BE%D1%80%D0%BA%D0%B0
  • http://Chaliev.ru/statistics/vyborochnoe-nablyudenie.php

[свернуть]
Помогла статья? Оцените её
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд
Загрузка...